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Knot Categorification



two geometric approaches to the

knot categorification problem,

which come out of string theory. 

I will describe 



one set out to categorify. 

A key new aspect of both approaches

is that it is manifest that decategorification

gives back the quantum link invariants



is a variant of 

two dimensional mirror symmetry.

Mirror symmetry, and tools developed to study it,

Relation between the two approaches

play a central role.



Elements of these approaches have

been discovered by mathematicians earlier, 

Kamnitzer and Cautis,

notably in the works of 

Seidel and Smith, and others.



There is a third approach 

with the same string theory origin,

due to Witten.

What emerges from string theory

is  unified framework 

for knot categorification.



The story I will tell you about is subject of three papers:

Knot Categorification from Mirror Symmetry

Part I: Coherent sheaves, 2004.14518 

Part II: Lagrangians, 2008.XXXX 

Part III: String theory origin, 2009.XXXX 

and a series of lectures:

UCLA Distinguished Lecture Series
https://www.math.ucla.edu/dls/mina-aganagic



To begin with, it is useful to recall

some well known aspects of knot invariants.



depends on a choice of a Lie algebra,

coloring its strands. 

A quantum invariant of a link

and a collection of representations of 



The link invariant,

in addition to the choice of the Lie algebra

depends on one parameter 

and its representations,



 Chern-Simons theory with gauge group based on the Lie algebra 

and (effective) Chern-Simons level

Edward Witten explained in ’89 that, 

this quantum link invariant comes from



 two-dimensional conformal field theory associated to

     We can take this, rather than Chern-Simons theory, as the starting point.

In the same paper he also showed that

underlying Chern-Simons theory is a

and



The conformal field theory one needs has an

affine Lie algebra symmetry

               

obtained as the central extension of the loop algebra of 

where one fixes the central element to be 



and its categorification emerges

We will begin by reviewing the relation of

from geometry.

conformal field theory to quantum knot invariants.

Then, we will explain how the entire structure 



To eventually get invariants of knots in       or 3,

which is a complex plane with punctures.

x
x

x

we want to start with a Riemann surface 

x

x
x



xx
x

It is equivalent, but better for our purpose,

to be a punctured infinite cylinder.

to take

x



To punctures at finite point

xx
x

x

we will associate finite dimensional representations      

 of         .



infinite dimensional,  Verma module representations,

whose highest weight vectors 

are given by generic weights of            .

 

To punctures at  the two ends at infinity,

we will associate a pair of

xx
x

x



The Riemann surface 

can be obtained by sewing from

x

3-punctured spheres.

xx
x

x



x x x

x

To a 3-punctured sphere 

a chiral vertex operator

which acts as intertwiner between pairs of  Verma module representations.

conformal field theory associates 



obtained by sewing chiral vertex operators. 

To a Riemann surface with punctures 

conformal field theory associates  

a conformal block

xx
x

x



we get to make choices of intermediate Verma module representations,

xx
x

x

so we get a vector space of conformal blocks, 

the subspace of            representation

In sewing chiral vertex operators

whose dimension turns out to be that of 

with fixed



By varying positions of vertex operators  on       as a function of 

we get a colored braid in three dimensional space                     

“time” 



The braid invariant 

is a matrix that transports

the space of conformal blocks,

along the braid      .  



To describe the transport,

instead of characterizing            conformal blocks 

in terms of vertex operators and sewing,

it is better to describe them as solutions to a differential equation.

x x
x

x



is the equation discovered by Knizhnik and Zamolodchikov in ’84:

xx
x

x

conformal blocks of           The equation solved by

                

   

on

The equation makes sense for any            ,  not necessarily integer.



The quantum braid invariant

is the monodromy matrix of the Knizhnik-Zamolodchikov equation,

along the path in the parameter space corresponding to 

the braid        .



The monodromy problem of the           Knizhnik-Zamolodchikov equation 

They showed that its monodromy matrices are given in terms of the 

R-matrices of the quantum group 

was solved by Tsuchia and Kanie in ’88 and,  Drinfeld and Kohno in ’89.

corresponding to 



Action by monodromies

turns the space of conformal blocks into a module for the 

quantum group in representation, 

The representation          is viewed here as a representation of         ,

and not of         ,  but we will denote by the same letter. 



The monodromy action   

is irreducible only in the subspace of

  

x x
x

x

of fixed    

corresponding to conformal blocks of the form



quantum invariants of not only braids

This perspective leads to

but knots and links as well.



Any  link  K can be represented as a 

a closure of some braid.

=



of  the braiding matrix,

taken between a pair of conformal blocks

The corresponding quantum link invariant is the matrix element

which correspond to the top and the bottom of the picture.



The conformal blocks 

 

           

      

which describe pairs of vertex operators,

we need are very special solutions to KZ equations

which come together,  fuse,  and disappear.

colored by complex conjugate representations



 both braiding and fusion of conformal field theory

play an important role in the story.

This way,



To categorify quantum knot invariants,

one would like to associate 

to the space conformal blocks one obtains at a fixed time slice

a   bi-graded category,

and to each conformal block an object of the category.

x x x



To braids,

one would like to associate 

functors between the categories 

corresponding to the

top and the bottom.



Moreover,

we would like to do that in the way that

recovers quantum link invariants upon 

de-categorification.



One typically proceeds by coming up with a category,

and then one has to work to prove

that de-categorification gives

the invariants one set out to categorify.

 



The virtue of the two of the approaches 

I will describe in these lectures,

is that the second step is automatic.



I will start by describing the two 

approaches we end up with,

and the relation between them

in a manner that is more or less self contained.



I will describe their superstring theory origin

Later on,

and show it is the same as in  Witten’s approach.



The starting point for us is 

a geometric realization 

Knizhnik-Zamolodchikov equation. 



so                      are one of the following types:

We will specialize            to be  a simply laced Lie algebra 

The generalization to non-simply laced Lie algebras

 involves an extra step, which we will not have time to describe.



It turns out that Knizhnik-Zamolodchikov equation of

is the “quantum differential equation” of a 

This result has been proven recently

certain holomorphic symplectic manifold.

by Ivan Danilenko, in his thesis.



Quantum differential equation of a Kahler  manifold        

The connection is defined in terms of “quantum multiplication” by divisors 

 over the complexified Kahler moduli space.

 of a connection on a  vector bundle 

is an equation for flat sections

with fibers



defined in terms of Gromov-Witten theory or,

the topological A-model of 

Quantum multiplication used in the connection 

                          

is a product  on 



The first,                 term of the quantum multiplication 

                          

subsequent               terms are quantum corrections.

is the classical product  on                :



Just as Knizhnik-Zamolodchikov equation

is central for many questions in representation theory,

quantum differential equation

is central  for many questions in 

algebraic geometry and in mirror symmetry.

We will be discovering here a new connection between the two.



to coincide with the Knizhnik-Zamolodchikov equation

solved by conformal blocks of           ,  

one wants to take           to be a very special  manifold.

To get the quantum differential equation 



singular        monopoles, with prescribed Dirac singularities,  on 

The manifold 

we need can be described as the moduli space of

where         is the Lie group of adjoint type with Lie algebra 



at the corresponding point on in 

and place it at the origin of       .

we take  a singular          monopole 

For every vertex operator

        

Monopole charge is the highest weight of the            representation       . 



of the subspace  of representation 

The total monopole charge, 

including that of smooth monopoles is the 

which the conformal blocks transform in.



of intersection of certain slices in affine Grassmannian  of 

Here, the vector 

encodes the singular monopole charges in order they appear 

Our manifold            has several other useful descriptions.

and             is the total monopole charge.

The best known one is as a resolution of



All the ingredients in

have a geometric interpretation in terms of        , 

x x
x

x

which are the complexified Kahler moduli of                

starting with the (relative) positions of vertex operators on

.



unless we work equivariantly with respect to a torus action

Since        is holomorphic symplectic,

that scales the holomorphic symplectic form

its quantum cohomology is trivial,

We chose all the singular monopoles to be at the origin of 

 in 

in order for this to be symmetry.



        

The equivariant parameters for 

preserving the holomorphic symplectic form, 

determine the highest weight vector of  Verma module              in

One works equivariantly with respect to a full torus of symmetries



The fact that Knizhnik-Zamolodchikov equation solved by

has a geometric interpretation as the 

quantum differential equation of 

computed by        equivariant Gromov-Witten theory,

implies the conformal blocks too have a geometric interpretation.



equivariant counts of holomorphic maps 

 

Solutions of the quantum differential equation are 

working equivariantly with respect to       . 

These generating functions go under the name Givental’s J-function

of all degrees computed by the A-model on    

or,  “cohomological              function” of        .



The domain curve

is best thought of an infinite cigar  with an         boundary at infinity. 

 The boundary data is a choice of a K-theory class

Knizhnik-Zamolodchikov equationIt determines which solution of the

the vertex function computes.



The vertex function is a vector

due to insertions of classes                          at the origin of D.

Geometric Satake correspondence,

          with the weight space                   identifies



in terms of

The geometric interpretation of conformal blocks of 

has more information than the conformal blocks themselves.



Underlying the Gromov-Witten theory of  

       

     with          as a target space.

is a two-dimensional supersymmetric “sigma model” 

The sigma model describes all maps 

not only holomorphic ones.



      

                    

The physical meaning of 

 Gromov-Witten vertex function

with target         on

is the partition function of the supersymmetric sigma model



One has, in the interior of      ,   an A-type twist

and at infinity, one places a  B-type boundary condition.

                    



Boundary conditions form a category,  and          

working equivariantly  with respect to       is 

 the derived category of         equivariant  coherent sheaves on 

the category of boundary conditions of the sigma model on         , 

preserving a B-type supersymmetry and



Picking, as a boundary condition, an object

we get                                as the partition function.

 

only through its K-theory class

It depends on the choice of the brane         



along the path in its Kahler moduli corresponding to the braid .

      

 

the action of                  on the space of conformal blocks          

       

is the  monodromy of the quantum differential equation of          ,

Since the Knizhnik-Zamolodchikov equation of

is the quantum differential equation of        ,



of the brane  at the boundary at infinity

K-theory class a-priori comes from the action on the

The action of monodromy

so the                   quantum group acts on equivariant K-theory 



Since the sigma model needs the actual brane

 to serve as the boundary condition,

an action on the brane  itself,

the action of monodromy has to come from 



Along a path in Kahler moduli

the derived category stays the same,  so the braid group 

that acts on branes by

is an auto-equivalence of the derived category, 



From sigma model perspective, the monodromy problem arizes 

according to the braid, in the neighborhood of the boundary at infinity.

by letting the moduli of the theory vary

The direction along the cigar coincides with the “time     ” along the braid.



By asking how monodromy

Cecotti and Vafa.studied twenty years ago by

one gets a Berry phase type problem 

acts on the quantum state produced at

by the path integral over the cigar,



The solution of the problem is the linear map  

the monodromy of the quantum differential equation,

which acts on the K-theory class of the brane



The path integral depends only on the homotopy type of path B.

so taking all the variation to happen near the boundary,

we get to keep the moduli constant over the entire cigar,

 but produce a new boundary condition        

which is the image of           under the derived equivalence functor      .
.



Consistency of these two descriptions

via the  monodromy of the quantum differential equation

lifts to

a derived auto-equivalence functor of the category 

the action of braiding on equivariant K-theory 

says that 

This reproduces a very difficult to prove theorem by 

Bezrukavnikov and Okounkov.



To extract the monodromy matrix elements

cut the infinite cigar near its boundary, at 

 and insert a “complete set of branes”.



are the vertex functions of the branes. 

and

with the pair of B-branes at the boundary

computes the monodromy matrix element

Path integral of the sigma model

where time runs along the annulus

         

where 



with time that runs around the        ,

computes the index of the supercharge        preserved by the two branes.

         
The same path integral 



is per definition the graded Hom space between the branes

computed in 

The cohomology of the supercharge Q 

 



So far, we understood that  

manifestly categorifies

braiding matrix elements.



The quantum invariants of links should also be categorified by

since they too can be expressed as matrix elements of the braiding matrix

between pairs of conformal blocks. 



For this one first needs to understand which branes in   

correspond to conformal blocks 

where pairs of vertex operators fuse to trivial representations.



In looking for objects of   

whose vertex functions are conformal blocks 

we will discover that not only braiding,

but also fusion has a geometric interpretation in terms of



For this, we need an additional important insight

contained in the sigma model.



In general, one may have more than one braid group action 

on the derived category.

The sigma model origin of our theory spells out exactly 

which derived equivalence functor we are getting.



By its origin in the sigma model to          , the functor 

comes from variation of stability condition on 

defined with respect to a central charge function

which is a close cousin of 



The vertex function 

in two different ways.

generalizes the central charge function



Firstly,  the vertex function is  a vector

due to insertions of                           classes at the origin of D.

and secondly it depends on equivariant parameters

of the     -action on        . 



Undoing the first generalization, by placing no insertion at the origin

we get a scalar analog of the vertex function              

 which is the “equivariant central charge function”



The central charge function that provides the stability condition on the category

is obtained from the equivariant central charge by

 

setting the T-equivariant parameters to zero. 



is known as the Pi stability condition,

a Bridgeland stability conditions.

discovered by Douglas.

The stability condition defined with respect to

Our setting should be a source of model examples of 



(generalized) central charges. 

In fact, the original reason why physicists

were interested in understanding vertex functions,

is because they compute



Now we can return to understanding how

categorifies                 invariants of links.



is reflected in the behavior of its central charges.

One of the lessons from the very early days of mirror symmetry 

is that the geometry of           near a point in its moduli space

where it develops a singularity



For us, the central charges are close cousins of conformal blocks,

must be reflected in the geometry of        . 

so the behavior of conformal blocks



sewing chiral vertex operators as follows:

x

x
x

x

approach, one gets a natural basis of conformal blocks

obtained by

As a pair of vertex operators

the “fusion basis”.



 Possible choices of fusion products

that occur in the tensor product.

are labeled by representations



A basic result in conformal field theory is that

“fusion diagonalizes braiding”

braiding acts diagonally,In the fusion basis,

x
xxx

x
x xx

unlike in the basis we started the talk with



  in which it develops a singularity due to a collection of vanishing cycles

 labeled by representations in the tensor product

coming togetherCorresponding to a pair of vertex operators

is a limit in Kahler moduli of 



These vanishing cycles give rise to objects of the derived category

as the conformal blocks in the fusion basis.

whose vertex functions have the same  leading behavior near

the singularity at



of the derived category                                     .

do not in general come from of actual objects

Conformal blocks which diagonalize the  action of braiding 

 on which 

are rare.

Eigensheaves of braiding                      

the braiding functor acts as



with terms in the filtration labeled by distinct representations

on the derived category                                   ,

 in the tensor product

What we get instead is a filtration 



Branes in the m-the term of the filtration 

  

as the dimension of the corresponding vanishing cycle         

They have central charges  that vanish at least as fast as

but in general contain terms that vanish faster.

come as close as possible to being eigensheaves. 

The order of vanishing                            increases as        decreases.



corresponds to a generalized flop in the geometry. 

Braiding which exchanges the pair of vertex operators

since more than one cycle vanishes,

and in general the vanishing cycles are not spherical.

The flop is generalized 



 pair of filtrations, one on each side of the flop:

 

 

for                          and                   

for                     .                  

By analyticity of the central charge function we get a



Braiding preserves the filtrations, 

given order of vanishing of central charge,

with those of that vanish faster, and which belong to lower orders

in the filtration.

since it has the effect of mixing up objects of a

                          and                   



The degree shifts                      that determine te action of the braiding functor

can be read of from the behavior of equivariant central charges,

 Here          is the dimension of the vanishing cycle  and         is known.

the scalar cousins of conformal blocks:



that fusion diagonalizes braiding.

Thus, existence of these filtrations

is the geometric and categorical origin 

of the statement in conformal field theory



Our theory is a source of examples,

Derived equivalences of this type are perverse equivalences of 

Rouquier and Chuang.

which come from geometry and physics.



We can now characterize branes of   

whose vertex functions are conformal blocks 

describing cups and caps.



The  cap colored by a representation                   

which approach each other and fuse to the identity.

colored by conjugate representationscomes from a pair of vertex operators, 



belong to the lowest term of the filtration

so they are necessarily eigensheaves the braiding functor

for the same reason the identity representation is special.

Even then, they are extremely special ones,

The objects                       corresponding to such conformal blocks

corresponding to bringing and         together



is a  vanishing cycle   

where          is a maximal parabolic subgroup of   

known as the minuscule Grassmannian 

where          is a  minuscule representation 

Associated to identity representation in the tensor product



When a collection of vertex operators come together in pairs of

our manifold has a local neighborhood where we can approximate it as  

where 

minuscule representations and their conjugates

is a product of minuscule Grassmannians:



We get a very special B-type brane 

which is the structure sheaf of this vanishing cycle,

Among other things, the vertex function of this brane is the conformal block

which we will denote by



For these branes, 

are automatically braid invariants whose Euler characteristic 

is the matrix element   

 of the corresponding  braiding matrix            .      



Using very special properties of  these  branes one can show that, 

categorify the   corresponding                  link invariant,

they are themselves link invariants.

moreover,  not only do the homology groups



An elementary consequence of this approach  

is a geometric explanation for  

mirror symmetry of                  link invariants

which states that the invariants of 

 

are related by

a link         and its mirror image 



In this approach mirror symmetry of links follows from Serre duality

with branes       and       at the two ends

 and       -cohomology obtained by a reflection that exchanges the endpoints. 

which is an isomorphism of       -cohomology

The shift in the equivariant degree comes from the fact that, while 

is trivial, its unique holomorphic section is not invariant under        .



Starting with Serre duality,

and using

one finds

taking the Euler characteristic of both sides



While new,  the fact that Serre duality implies mirror symmetry

is not an accident,  since the directions along the interval

and along the link, which get reflected, coincide. 



Mirror symmetry 

gives a second description of homological 

knot invariants.

It is based on the "equivariant mirror” of 



is a Landau-Ginzburg theory with target      ,

       

The equivariant mirror 

and potential .



Ordinary,  non-equivariant mirror of

 

is a hyper-Kahler manifold 

which is, to a first approximation,

given by a hyper-Kahler rotation of  



As          has only Kahler but not complex moduli,

due to the        equivariance we impose,  

             has only complex but no Kahler moduli turned on.



A description based on 

would give a symplectic geometry approach to the categorification problem,

with 

replaced by its homological mirror, an appropriate category of 

Lagrangian branes on 



such as those in the works of Seidel and Smith, for Khovanov homology.

   “symplectic” homological link invariants,

which only capture the theory at 

At the moment, one only knows how to obtain from 



There is an alternative symplectic geometry approach,

where the  dependence of the theory

instead of being mysterious, 

is manifest.

on       ,



action on       ,          

The key fact is that, since we work equivariantly with respect to the 

  

all the relevant information about its  geometry            

 

 which scales the symplectic form

is contained in its fixed locus, 

        

holomorphic

which is a holomorphic Lagrangian, its  “core”.



Viewing          as the moduli space of monopoles on 

its core       is a locus in the moduli space where all the monopoles,

singular or not, are at the origin of           and at points in  



one can work with the the core  and the core’s mirror 

mirror

mirror

Working  equivariantly with respect to                       action on 

 the bottom row has as much information about the geometry 

as the top.  

,

Instead of working with and its mirror 



While           embeds into   

   fibers over         with holomorphic Lagrangian                fibers

holomorphic Lagrangian submanifold of dimension 

as a



For example,  for 

       which is an            surface, its core        looks like

and  is  mirror to         .

and its mirror          is a            fibration over         , which looks like  



    

are Lagrangians in       that begin and end

 

at the punctures,

and which are projections  from Lagrangian spheres in         .

Mirror to vanishing          ’s in  

In this case,          is a single copy of the surface          from the 

where the          fibration  degenerates.

from the beginning of the talk, with marked points



     

More generally, 

and the ordinary mirror of its core        ,

the equivariant mirror of 

is 

and             is our Riemann surface.

where         is the total number of smooth monopoles



and of       

Projecting to the common SYZ base of 

is the same as projecting           ,

the moduli space of singular monopoles  on                     

to



Including an equivariant         action

corresponds to adding to the sigma model on  

a specific potential,               

which is a multi-valued holomorphic  function on         . 

on           and on        



The potential              is a multi-valued holomorphic function on       , 

which is a sum of three types of terms, all coming from the equivariant actions 

and two which come from the                   action:

a term coming from the               -action:

,



Mirror symmetry predicts that  conformal blocks of                  

are partition functions of the B-twisted theory on       ,

 

with an A-type boundary conditions at infinity, corresponding to a

Lagrangian         in       . 



where is the top holomorphic form on          , 

Such amplitudes have the following form

is the Landau-Ginsburg potential,

and ’s are the chiral ring operators.



We are rediscovering here,  from mirror symmetry, 

 
 conformal blocks 

which goes back to work of Feigin and E.Frenkel in the ’80’s

and Schechtman and Varchenko.

the  integral formulation of the 



There is a reconstruction theory,

due to Givental and Teleman,

which says that starting with the genus zero data,  

or more precisely, with the solution of  quantum differential equation,

one gets to reconstruct all genus topological string amplitudes

of a semi-simple 2d field theory.

Thus, the B-twisted the Landau-Ginsburg model             ,

and A-twisted sigma model on          , 

working equivariantly with respect to      ,

are expected to be equivalent to all genus.



Knizhnik-Zamolodchikov equation

is an A-brane at the boundary of         at infinity,

the derived Fukaya-Seidel category of  A-branes on       with potential      . 

The brane is an object of

Corresponding to a solution of the



The objects of                                       are  graded Lagrangians

where the grading is the Maslov grading,

together with additional grades which come from 

the non-single valued potential.



The additional grades may be defined 

analogously to the way the lift of the phase of 

by lifting the phase of   

to a real valued function on the Lagrangian,

is used used to define the cohomological, Maslov grading.



In general, to formulate a category of

A-branes on a non-compact manifold such as  

requires work, to cure the non-compactness.



In the present case, we are after a symplectic-geometry based 

The Lagrangians we need are all compact,

since they are related by mirror symmetry 

to compact vanishing cycles on       . 

approach to knot homology. 



there are no issues with non-compactness of     .

For such Lagrangians, 

The superpotential              would have played no role either, 

were it single valued. 



 is not single valued for us,

but its main effect is to provide additional gradings on

the Floer cohomology groups.



Mirror symmetry   

equivariant 
mirror

mirror

mirror

helps us understand exactly which questions we need to ask

to recover homological knot invariants from       .



Since             is an ordinary mirror of         , 

 
we should start by understanding how to recover  

homological knot invariants from         ,  instead of               

equivariant 
mirror

mirror

mirror



Every B-brane on           which is relevant to us  

“comes from” a B-brane on        

via a pushforward functor, 

that interprets a sheaf        on      ,                             

as a sheaf on 

(more precisely, an object of            ) 



This functor has an adjoint, that goes the other way,

that takes a sheaf on         to a sheaf on       ,  

by tensoring with the structure sheaf         ,  and restricting to 



Hom’s on           to those on        .  

The fact these are adjoint functors is what lets us relate the computations of   



Given any pair of objects on         that come from       

agrees with the Hom downstairs,  in         ,                 

the Hom between them, computed upstairs, in 

after replacing           with              ,



By mirror symmetry, for every pair of objects 

on         which come from       ,  there has to be a pair of Lagrangians  

on         which are mirror to        and         , 

such that Hom’s on          agree with those on        .



The functors that enter

relate objects on         and on        ,

in a way that mirrors           and         ,

and 

 Construction of these functors, 

is joint work with Shende and McBreen.

and the parallel understanding of mirror symmetries upstairs and downstairs



Mirror symmetry

let us trade any question in the upper left corner

for a question in the lower right,

equivariant homological mirror symmetry.

and these functors 

mirror

mirror

giving us a definition of



Recall our example,         the equivariant mirror to                                             .

       which is the              surface.

Mirror to  i-th vanishing         in        is the  Lagrangian  

in          .



which is a         fibration over     .

        the multiplicative          surface, The mirror of         is 

The functor                            maps any Lagrangian in       ,

to a Lagrangian in      , which fibers over        with           fibers. 

 
In particular,               is the i-th vanishing sphere in       . 



The functor going the other way                        

does not send the vanishing sphere               back to      :

or its  via its definition coming from a Lagrangian correspondence,

one finds a figure eight Lagrangian

Instead, either computing it either  from mirror symmetry, 



is that one ends up preserving Hom’s. 

It is not difficult to see that this indeed is the case

The basic virtue of the pair of adjoint functors,



The example we just gave  is relevant construction of 

Khovanov homology, 

surface:copies of an 

can be described as  

          

an open subspace in the symmetric product of 

since the needed 



 is  the same geometry Seidel and Smith

in their work on symplectic Khovanov homology,

studied

This

as shown by Manolescu.



The corresponding  Landau-Ginsburg model

has the target which is also an open subset of symmetric product, 

with potential  

of the surface where the conformal blocks live 



The objects corresponding to top and the bottom 

are the Lagrangians:

* * * *

* * * *



The generators of the Floor co-chain complex 

To get a non-trivial link,  one  starts by transporting             along the braid:

* ** *

are the intersection points

graded by the Maslov index,  and  the new grading that comes 

 
non-single valued super-potential.from the



The homological link invariant is the Floer cohomology group

whose differential is obtained by counting holomorphic disks 

requires           to be single valued around the boundary of the disk,

The condition that the disk is in 

so equivariant grade of  the differential is zero.

of Maslov index one on       , as in Floer’s theory.



 The Euler characteristic of the theory

simply counts the intersection points 

* ** *

keeping track of gradings.

The result is the geometric explanation for the 

construction of  Jones polynomial due to Bigelow,
and a proof it categorifies the Jones polynomial.



In the remaining time,

let me try to explain the string theory origin of this construction.

The two dimensional theories we have been 

discussing originate directly from string theory.



A helpful observation is another interpretation of 

intersection of slices in the affine Grassmannian 

and the moduli space of singular        -monopoles, 

is also a Coulomb branch of a three dimensional gauge theory.

In addition to being a resolution of 



 three dimensional quiver gauge theory

The theory is a

V1

W1

V2

W2

with quiver           

based on the Dynkin diagram of



Wa

Va

The ranks of the vector spaces

are determined from   in 



labeled by a simply laced Lie algebra              

This gauge  theory arises on  defects,

of a six dimensional “little” string theory

with (2,0) supersymmetry.

or more precisely, on D-branes



The six dimensional string theory is

obtained by taking a limit of IIB string theory on  an

 ADE surface singularity of type

In the limit, one keeps only the degrees of freedom

supported at the singularity and decouples the 10d bulk.



One wants to study the six dimensional (2,0) little string theory on 

where 

is the Riemann surface where the conformal blocks live,

and         is the domain curve of the 2d theories we had so far.

is the space where the monopoles live



The vertex operators on the Riemann surface 

x x
x

x

come from a collection of defects in the little string theory,

which are inherited from D-branes of the ten dimensional string.



The D-branes needed are 

two dimensional defects of the six dimensional theory on

      

 

x x
x

x

supported on         and the origin of 



The theory on the D-branes is the quiver gauge theory 

V1

W1

V2

W2

This is a consequence of the familiar description of 

D-branes on ADE singularities

due to Douglas and Moore in ’96.



The theory on the D-branes supported on     ,   

is a three dimensional quiver gauge theory on               

rather than a two dimensional theory on       ,

 due to a stringy effect.

             

V1

W1

V2

W2



x

These turn the theory on the defects supported on       ,     

to a three dimensional quiver gauge theory on

where the        is the dual of the circle in      .

In a string theory,

one has to include the winding modes of strings around C.

x
xx



The same T-duality that makes the D-branes 

three dimensional turns them into monopoles on 

of the T-dual six dimensional             string 

which is a gauge theory.



x x
x

x

The choice of the  Verma module state

is the choice of moduli of little string theory, 

i.e. they are the expectation values of dynamical fields.

The choice of vertex operators in

 

is the choice of D-branes of the  little string. 



One can study the three dimensional theory on 

which comes from little string theory,

in much the same way

as we did  the two dimensional theory.



The fact that the string scale is finite,

leads to a deformation of the structures 

we had found, in particular, it breaks conformal invariance.



Rather than getting conformal blocks 

and Knizhnik-Zamolodchikov equation,

from partition functions of the 3d theory on

corresponding to replacing

 quantum affine algebraaffine Lie algebra

one obtains their deformation



Pursuing our story further,

rather than discovering knot invariants

we would discover integrable lattice models,

those of, in some sense, very general kind.

This story is developed in the work with Andrei Okounkov.



The six dimensional (2,0) string theory has a point particle limit

in which it becomes the six dimensional conformal field theory

of type        

This limit coincides with the conformal limit of the quantum affine algebra



In the point particle limit,

the winding modes that made the theory

on the defects three dimensional, instead of two,

 become infinitely heavy.

x
xx

As a result,  in the conformal limit,  the theory on the defects

becomes a two dimensional theory on 



It is surprising,  but well understood 

that there are different two dimensional limits

a three dimensional gauge theory can have. 

The point particle limit of little string theory 

specifies which two dimensional limit

of the three dimensional gauge theory on a circle we need to take.

The limit is called the “Coulomb branch reduction” 

as the one keeps the Kahler moduli of the Coulomb branch 

(but not of the Higgs branch) fixed.



The resulting theory is not a gauge theory in general,

but it has the two other descriptions,

I described earlier in the talk,

related by two-dimensional mirror symmetry.



There is a third description,

 due to Witten.

It describes the same physics,

just from the bulk perspective.



Compactified on a very small circle,

the six dimensional        -type (2,0) conformal theory

with no classical description,

becomes a        -type gauge theory

in one dimension less.



To get a good 5d gauge theory description of the problem,

the circle one shrinks corresponds to         in

so from a six dimensional theory on

one gets a five-dimensional gauge theory on a manifold with a boundary



The five dimensional  gauge theory

has gauge group 

which is the adjoint form of a Lie group with lie algebra       .

where

 It is supported on



Our two dimensional defects become monopoles 

of the 5d gauge theory on 

supported on         and at points on, 

along its boundary. 

,



Witten shows that the five dimensional theory on

can be viewed as a gauged 

Landau-Ginzburg model on           with potential  

on an infinite dimensional target space       ,

corresponding to          connections on 

with suitable boundary conditions (depending on the knots).



To obtain knot homology groups in this approach,

one ends up counting solutions to

certain five dimensional equations.

The equations arise in 

constructing the Floer cohomology groups

of the five dimensional Landau-Ginzburg theory.



Thus, we end up with three different approaches 

to the knot categorification problem,

all of which have the same 

six dimensional origin.



They all describe the same physics

starting in six dimensions.

The two geometric approaches, 

describe the physics from perspective of the defects that introduce knots 

in the theory.

The approach based on the 5d gauge theory,

describes it from perspective of the bulk.



In general,

theories on defects 

capture only the local physics of the defect.

In this case, 

they capture all of the relevant physics,

due to a version of supersymmetric localization:

in the absence of defects, 

the bulk theory is trivial.


